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ABSTRACT 

A study of heat propagation around a hypothetical radioactive waste re­

pository is presented. The investigated flow domain was limited to a 

quarter of the flow domain around a single canister due to symmetry by 

vertical planes passing through the centre of the canister, half dis -

tance between the adjacent tunnels and the adjacent canisters. Strictly 

speaking, such an approach is applicable to a repository of infinite 

extent. However, from a practical point of view this assumption applies 

to all canisters but the ones close to the edge of the repository. The 

following different material regions were considered: (i) Canister con­

taining the spent fuel, (ii) Buffer (bentonite) around the canister, 

(iii) Backfilled (mixture of bentonite and sand) tunnels, and (iv) host 

Rock. The canister material was represented by a "homogenized" medium 

obtained by weighted averaging of the main constituents of the canister, 

viz. spent fuel, copper and lead. A geothermal gradient of 13 °C/km was 

assumed. The initial heat effect per canister was 1066 W. The total ver­

tical extent of the flow domain considered was about 1500 metres. The 

base case, with 6.2 m canister spacing and 30 m tunnel spacing, resulted 

in a maximum temperature at the canister/buffer interface of about 66 cc 

( corresponding to a temperature rise of about 54 cC), and about 50 cc 

(about 38 cc temperature rise) in the rock. 
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1. INTRODUCTION 

The present investigation is carried out in the course of the analysis 

of the thermal effects due to hypothetical radioactive waste repository 

sites, on the surrounding environment. The heat released by the radioac­

tive waste will increase the temperature of the surrounding buffer mate­

rial and rock. This study investigates the temperature distribution 

around the canisters for the basic geometrical setting as well as the 

effect of varying the distance between the adjacent boreholes for the 

location of the canister and the distance between adjacent tunnels. 

Due to the nonlinearity and coupling between the flow and heat model 

equations, the complicated geometry of the investigated domains, and 

inhomogeneity in rock properties, including fractured zones, the calcu­

lations are to be carried out by a numerical method of solution. 

Prior to the analysis of various prospective radioactive sites, it is 

necessary to study the relevance of the different flow phenomena and of 

the local inhomogeneities in the rock properties, on the studied pheno­

menon. Disregarding irrelevant flow phenomena may lead to a significant 

decrease in the effort for data preprocessing, to the decrease of the 

computational effort and of the needed resources, and to the increase in 

the accuracy of the results. A careful analysis of the significance of 

the different parameters and phenomena is required before deciding which 

effects should be disregarded, and conduct calculations under simplify­

ing assumptions. In the frame of such possible simplifications we 

analyzed if the local inhomogeneity in the material properties due to 

the buffer has any significant effect on the maximum reached tempera­

tures in comparison with the case where we attributed rock properties to 

the whole domain. 

The present analysis is carried out under the assumption that heat is 

transferred to the surrounding only by conduction. It should be pointed 

out that this assumption is conservative, since possible convection 

currents will have a cooling effect. The analysis of the conditions 

under which convection currents occur, as a result of the thermal condi­

tions prevailing in the surrounding of the repository, will be the sub­

ject of a another study. 
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The investigated domain is limited by vertical planes passing through 

the centre of the canister, half distance between the adjacent caverns 

and the adjacent canisters. For reasons of symmetry, these vertical 

planes are no heat flow boundaries or insulated boundaries. This implies 

that the calculations for the considered flow domain, confined within 

vertical planes of insulated boundaries, account for the effect of all 

the canisters contained within the repository. 

Strictly speaking this assumption applies to a repository of infinite 

extent. Practically, it applies to all canisters but the ones close to 

edge of the repository (where the assumed symmetry does apply). Obvious­

ly, the maximum temperature reached at the location of the canisters 

close to the boundaries will be smaller than at the locations far from 

the boundaries, for which the calculations are performed. 
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2. PROBLEM DESCRIPTION 

A KBS-3 type of repository (Figure 1) is assumed to consist of a series 

of parallel tunnels, located at a depth of 500 metres below the rock 

surface. The distance between the longitudinal axes of the adjacent tun­

nels is 30 meters. The characteristic basic setting considered is: 

Dimensions of tunnel cross -section 4. 5 metres height and 3. 7 metres 

width, and canisters (Figure 2) containing the spent fuel and lead 

disposed in boreholes along the tunnels at a distance between the axes 

of adjacent boreholes of 6.2 metres. 

The length of a borehole is 7.7 metres below the tunnel bottom, and the 

borehole diameter is 1.5 metres. The canisters, of 0.8 metres diameter, 

are disposed at a depth of 7.5 metres below the bottom of the tunnel. 

After the emplacement of the canisters, the tunnels are filled with a 

backfill material, consisting of a mixture of sand and bentonite. The 

canisters, made of copper and filled with lead and spent fuel, are sur­

rounded by bentonite. 

The area over which a typical repository spreads is a rectangle with a 

side of one kilometre. As already mentioned for reasons of symmetry it 

is enough to study the domain presented in Figure 3, representing a 

quarter of the flow domain around a canister. 

The investigated domain extends to a depth of 1000 metres below the le­

vel of the repository. The region below this depth is assumed to be in­

significantly affected by the thermal conditions prevailing in the 

region of the repository. 

The top (surface ABCD in Figure 3), and the bottom of the investigated 

domain (EFGH surface Figure 3), were considered constant temperature 

boundaries and set according to the geothermal conditions at the Finn­

sjon study site (Ahlborn and Tiren [1989]). For reasons of symmetry, the 

lateral sides boundaries of the domain, i.e. ABFE, BCGF, DCGH and ADHE 

were considered insulated boundaries. 

For convenience the circular cross-section of the canister was 

approximated by a square with the sides such that the equivalent 
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(orthorhombic) canister volume becomes the same as for the actual 
(cylindrical) canisters. The cross section of the tunnel was 
approximated by a rectangle. The studied problem is the temperature 
distribution in time in the studied domain, as a result of the time 
dependent heat output due to the decaying radioactive material. 

The purpose of this investigation may be summarized as follows: 
(I) To study the temperature distribution for the basic geometrical 

setting (Figure 1) and considering the actual properties of the 
materials in place. 

(II) To study the temperature distribution for reduced distances bet­
ween the canisters and between the tunnels. 

(III) To find a geometrical configuration corresponding to a maximum 
temperature of 100 °C at the interface between the canister and 
the bentonite buffer. 
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Figure 1 . KBS-3 type of reposit ory. 
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3. MODEL EQUATIONS 

Heat conduction is governed by the following equations: 

The heat flux equation (Fourier's law) 

q_ = - ). T . 
1 ,1 

(1) 

where q_ is the thermal flux in the i direction, A denotes the thermal 
1 

conductivity, and T is temperature. 

The thermal energy conservation equation 

(p C T) + q_ . + Q (t) = 0 
, t 1, 1 

(2) 

Substitution of (1) into (2) yields 

(p C T) - (). T ) + Q (t) 
't 'i 'i . 

0 (3) 

where p the density, C is the specific heat, T = T (x,y,z,t) is the tem­

perature, A is the thermal conductivity and Q (t) represents the time 

dependent heat source. 

Boundary and initial conditions 

The boundary conditions are 

X 
0 < y < 1 

y 
z = 0 T = T 

bottom 0 < X < 1 

0 < X < 1 0 < y < 1 
y 

z = 1 T T 
X z surf 

X 0 0 < y < 1 0 < z < 1 : q = 0 
y z ,x 

X 1 0 < y < 1 0 < z < 1 : q = 0 
X y z ,x 

y 0 0 < X < 1 ' 
0 < z < 1 : q = 0 

X z ,Y 

y 1 0 < X < 1 0 < z < 1 : q = 0 
y X z ,Y 

(4) 

where 1, 1 and 1 are the dimensions of the domain in the x, y, and z 
X y Z 

directions, respectively, and T denotes the prescribed temperature 
surf 

on top of the rock surface and T denotes the prescribed tempera-
bottom 

ture on the bottom of the flow domain, respectively. 

The initial condition considered was a reference temperature assumed to 

follow the geothermal gradient. A distributed heat source (Q(t)) corre­

sponding to the variation in time of the thermal energy released from 

the radioactive waste is applied at the canister location. 
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4. NUMERICAL CALCULATIONS 

The geometrical configuration of the considered domain, a quarter of the 

domain around the canister, is presented in Figure 3. The different ma­

terials in the domain are: (i) Granite host rock, (ii) Buffer material 

consisting of a mixture of sand and bentonite back-filling the tunnels, 

(iii) Bentonite surrounding the canisters and (iv) Canisters, consisting 

of copper and lead, containing the spent fuel. The thermal properties of 

the different materials considered in the domain are given in Table I 

below. 

TABLE I. Thermal properties of the flow domain for the SKB 91 Canister 

Parameter Canister Buffer 
1) Tunnel Rock 

Density 5600 2000 2100 2700 
[kgm 

-3 
) p 

Spee. heat capacity 390 1100 1400 800 

C [ J kg-1 K -1 ) 

Thermal conductivity 390 0.75 2.4 3.0 

.A [Wm-1 K -1 ) 

Heat effect/canister 10662 ) 

Qtot [W) 

Volumetric heat effect 

Q [ Wm- 3 ] 471.26 2 ) 
0 

1) 
The values correspond to dry conditions. 

2) Initial heat effect at the emplacement of the canister. 

The thermal properties of the "equivalent copper canister", here called 

the SKB 91 Canister, are based on the material composition of the major 

constituents (i.e. spent fuel, copper and lead) of the canister (Berg­

strom [1990), Kjellbert (1990) as given in Table II in the sequel. 

- 9 -



The time dependent variation of the heat generation per canister during 

the first 1000 years of deposition, is approximated by a function of the 

following type: 

Q(t)/Q = 
0 

( a e 
1 

-Qt 
2 

+ 

where Q(t) denotes the time 

effect at the time of the 

constant coefficients. These 

(1-a ) e 
1 

-Q t 
3 

) 

dependent heat 

deposition, t 

are determined 

effect, Qo denotes the heat 

is time, Ql' Q and Q are 
2 3 

by minimizing a function for 

the sum of the squares of the differences between the heat function 

values and the observed values. The coefficient values are given in 

Table III. 

Graphical representations of the variation of Q(t)/Q in time, showing 
0 

the discrete input data and the curves fitted using the above relation-

ship, as well as the heat function parameter values used in the calcula­

tions are presented in Figure 4. 

TABLE II. Thermal properties of the SKB 91 "Equivalent Copper Canister" 

Weight Material Heat capacity Density 

kg J 
-1 -1 

kg K k J K 
-1 

kg m 
-3 

6585 Copper 390 2267 

14500 Lead 130 1885 

2000 Fuel 250 500 

12700 Copper 390 4955 

equivalent 
canister 5600 
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Rorer Thun•ik: 1991- 02- 12 20:17:12 
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Figure 4 Time dependent heat function used for the SKB 91 Canister . 
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TABLE III. Heat source function parameter data: 

Heat source function: 
1) 

-at -at 

Q(t)/Q ( 
2 

(1-a ) 3 ) 
= a e + e 

0 1 1 

Parameter Value 

Qtot [W] 1066 

Q 
-3 [W ·m ] 471, 26 

0 

a 7. 531212 · 10- 1 

1 

a 2 .176060 · 10-2 

2 

Q 1. 277985 · 10-3 

3 

Geometric characteristics of the heat 

source (3-d Cartesian): 

r = 0.4 m 1 
J; r = 0.3545 ro 

' 2 C C C 

r 0.75 m 1 
/; 

r 0.6647 m 
b ' b 2 b 

V = 4 12 h = 2.262 3 (h = 4.5 m) m 
C 

X 0 X 0.3545 
min max 

y 0 y 0.3545 
min max 

z 1000.5 z 1005.0 
min max 

The geothermal gradient was here assumed to be 13 °C/km. The initial 

temperature at a depth of 500 m was assumed to be 12. 3 °C and at the up-

per boundary the temperature was assumed to be 5. 8 °c. The geothermal 

gradient is applied to the flow domain by prescribing constant tempera­

ture (T = 25.45 °C, Z = 0) at the bottom boundary and (T = 5.8 °C, Z 

1512 m) at the top boundary. 

The present calculations were preceded by a set of calculations2 l in 

1) 
t is time in years. 

Z)To be presented in a separate report. 
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order to check the influence of varying the material properties as well 

as the geometric configuration associated with the spacing of the tun­

nels as well as the canisters. In addition the effects of the discreti­

zation of the flow domain, interpolation order of the elements, and the 

time integrations were checked. 

The flow domain was discretized by 210 quadratic (27-node hexahedron) 

three-dimensional elements and the total number of nodes was 2233. The 

time integration was performed according to a backward Euler (implicit) 

scheme for about 150 time steps. The time step was gradually increased 

with an initial time step in the range 5·103 -5-104 seconds and the cal­

culations were carried out for a final time between 100 and 1000 years. 

The results for each setting are displayed in the form of curves to show 

the temperature at relevant sections, such as between the tunnels, bet­

ween the canisters and along the centre of the borehole. Two types of 

curves are considered, one which displays time dependent temperature 

curves for selected points on a horizontal plane perpendicular to the 

longitudinal centre line of the canister (X=O , Y=O, 1000.5 < Z 1005.0) 

and the other temperature profiles along the x- , y- and z-directions 

for selected time levels. 

The following naming convention was introduced to facilitate the identi­

fication of the graphical displays: 

CBTlnHil 0 < X < 1 y = 0 z 1002. 75 
X 

CBTlnHI2 X 0 0 < y < 1 z 1002. 75 
y 

CBTlnHI3 X 0 y 0 990 < Z < 1020 

Canister 0 < X < 0.3545, 0 < y < 0.3545, 1000.5 < Z < 1005 

where 1 is half the spacing between tunnels, 1 is half the spacing be-
x y 

tween the canisters and n denotes the case no (n - a, b, ... , k). The 

base case is illustrated by a perspective plot of the temperature con­

tour lines approximately at the time when the maximum temperature was 

reached in the canister. 

In the calculations the canister and the spent fuel were represented by 

a single equivalent "copper like" medium whose physical properties were 

obtained by taking the weighted averages of the specific heat of the 
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main constituents of the actual canister. 

In addition to analyzing the heat propagation from the SKB 91 Canister 

for the base case, i.e. for a canister spacing of 6. 2 m and a tunnel 

spacing of 30 m, the object was to find a geometric configuration lead­

ing to a maximum of 100 cc at the interface between the canister and the 

buffer. 

The lateral extent of the flow domain subject to calculation was in the 

x-direction (1) between 10 and 15 m (corresponding to a spacing between 
X 

the tunnels of 20 - 30 m) and in they-direction (1y) between 1.5 and 

3.1 m (corresponding to a spacing between the canisters along each tun­

nel of 3.0 - 6.2 m). 

The physical properties of the flow domain, the thermal properties of 

the "equivalent" canister (SKB 91 Canister), and the heat source parame­

ter data are presented in Tables I, II and III. The time dependent heat 

function is presented in Fig. 4. 

SKB 91 Canister - Tunnel spacing=30 m 

Two cases were carried out: The base case CBTla ( 6. 2x30m) and three 

cases with a reduced canister spacing CBTli (5x30m), CBTlk (4x30m), and 

CBTlb (3.0x30m). The results of the calculations are summarized in Table 

IV. A graphical presentation of the results from the base case CBTla can 

be found in Appendix I. 

CBTla (6.2x30m): This case is considered the base case (6.2 m canister 

spacing and 30 m tunnel spacing). The maximum temperature reached at the 

canister/buffer interface is about 66 cc, corresponding to a temperature 

rise of about 54 cc, after about 12 years. The results of the calcula­

tions are presented in Figures l - 5 (in Appendix I). A perspective plot 

showing the temperature distribution at the time - 11. 4 years is pre­

sented in Figure 5 (in Appendix I). 

As could be observed in Figures lb, 2b, and 3b the temperature within 

the canister region equalizes practically instantaneously. This is a 
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direct consequence of using the "copper like" equivalent canister with 

its relatively high value of the thermal conductivity. 

CBTlb (3,0x30m): This case is a variation of the base case in which the 

canister spacing was reduced to 3 m. This value was considered the lower 

tolerance limit to the canister spacing in the present study without 

considerations of other aspects such as the mechanical strength of the 

repository that might stipulate a somewhat higher value. This variation 

increased the maximum temperature at the canister/buff er interface to 

94 °C, corresponding to a temperature rise of about 82 °C. The maximum 

occurred after about 21 years. 

SKB 91 Canister - Tunnel spacing=20 m 

The following cases were carried out: CBTld (6.2x20m), CBTlj (5.0x20m), 

CBTle (4.2x20m), CBTlh (3.8x20m), CBTlg (3.8x20m) and CBTlc (3.0x20m). 

The results of the calculations are summarized in Table V. 

CBTld (6,2x20m): This case is a variation of the base case with a canis­

ter spacing of 6.2 m and the tunnel spacing reduced to 20 m. The maximum 

temperature at the canisterjbuffer interface was about 73 °C. This means 

that reducing the tunnel spacing from 30 to 20 metres will increase the 

maximum temperature at the canister/buffer interface with only about 

7 °C. 

CBTle (4. 2x20m): This case is a variation of the previous case with a 

reduction of the canister spacing to 4.2 m. The maximum temperature at 

the canister/buffer interface was about 91 °C after about 34 years. 

CBTlh (3.8x20m): This case, with a canister spacing of 3.8m and a tunnel 

spacing of 20 m, resulted in a maximum temperature of about 99.3 °C 

(corresponding to a temperature rise of about 87 °C) after about 60 

years at the interface between the canister and buffer. From a thermal 

point of view, this case is considered to represent, the lower tolerance 

limit of the canister spacing for a tunnel spacing of 20 m. 
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CBTlc (3.0x20m): This case, with a canister spacing of 3 m and a tunnel 

spacing of 20 m, was included for the sake of comparison with the base 

case (CBTla) with a tunnel spacing of 30 m. The resulting maximum tempe­

rature at the canister/buffer interface was about 116 °C, corresponding 

to a temperature rise of about 104 °C. 

PLAN 87 Canister 

CBTlf (6,2x30m): This case represents a canister material variation of 

the base case (CBTla), in which the present SKB 91 Canister thermal pro­

perties have been replaced by the thermal properties used in the 

previous investigations (Tarandi [1983] and Ageskog [1987]). Thus the 
* 6 -3 -1 

specific heat per unit volume (pC) = 1. S · 10 [MJm K J was substituted 

for (pc/= 2.18-106 [MJm- 3K- 1 ] and the thermal conductivity >, = 3.0 
C 

[Wm_1K_ 1 ] was substituted for >, = 390 [Wm_1K_ 1 ], respectively. 
C 

The maximum temperature at the centre of the canister was about 78 °C 

(corresponding to a temperature increase of about 66 °C) and was reached 

after about 8 years. The maximum temperature reached at the canis­

ter/buffer interface was about 73 °C (corresponding to a temperature in­

crease of about 61 °C) and was reached after about 9 years. It should be 

pointed out that the temperature maxima reached at the mid-points bet­

ween the canisters and tunnels, respectively, are about the same as in 

the base case. Moreover, also the time points of the temperature maxima 

at the mid-points were about the same as in the base case. 
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TABLE IV. Summary of the results from the SKB 91 Canister settings 

with a tunnel spacing equal to 30 metres. 

Geometric Peak temperature T 
max 

properties 
Canister Buffer 

Code 1 1 T t T t 
X y max peak max peak 

CBTla3 ) 15 3.1 66.4 11.8 66.4 11.8 

(cC) and time t (years) 
peak 

Rock x = l 
X 

T t T t 
ma x peak ma x peak 

y = 1 
y 

T t 
max peak 

(CBTlf 4 ) 15 3.1 

CBTli 15 2.5 

CBTlk 15 2.0 

CBTlb 15 1.5 

78 8 73 9 

73 13 73 13 

81 15 

94 21 

81 15 

94 21 

50 32 

51 23 

57 52 

66 72 

81 270 

43 469 

43 427 

75 485 

45 351 

45 353) 

81 270 

TABLE V. Summary of the results from the SKB 91 Canister settings 

with a tunnel spacing equal to 20 metres. 

Geometric Peak temperature T 
properties 

Code 1 1 
X y 

CBTld 10 3 .1 

CBTlj 10 2.5 

CBTle 10 2.1 

CBTlh 10 1.9 

CBTlg 10 1.8 

CBTlc 10 1.5 

max 

Canister Buffer 

T t T t 
max peak max peak 

73 18 

83 26 

91 34 

99 60 

103 60 

116 306 

73 18 

83 26 

91 34 

99 60 

103 60 

116 306 

(cC) and time t (years) 
peak 

Rock x = 1 
X 

T t T t 
max peak max peak 

62 297 58 472 

84 312 80 469 

113 352 108 444 

y = 1 
y 

T t 
max peak 

60 414 

81 391 

112 398 

where 1 is half the spacing between tunnels, 1 is half the spacing 
X y 

between the canisters, T is the maximum temperature and t is the 
= ~ak 

time elapsed at the maximum temperature. The inconsistencies of the time 

points for the long term maxima are due to the fairly large time steps 

that were used towards the end of each calculation period. 

3) 

4) 

The calculations during the first 40 years were performed with a more 

refined element mesh (280 elements and 2871 nodes) and an initial 

time step of 5·103seconds in order to establish more accurately the 

transient behaviour of the initial period. 

Comparative calculation with PLAN 87 Canister thermal properties. 

- 17 -



7. CONCLUSIONS 

The maximum temperature reached in the base case ( 30 m tunnel spacing 
and 6.2 m canister spacing) was about 66 °C (corresponding to a tempera­
ture rise of about 54° C) at the canister surface, and about 50 °C (cor­
responding to a temperature rise of about 38 °C) at the interface bet­
ween the buffer and the rock. 

The results of reducing the tunnel spacing in the base case ( 6. 2 m 
canister spacing, 30 m tunnel spacing) from 30 to 20 m resulted in an 
increase of the the maximum temperature at the canister/buffer interface 
of only about 7 °C (i.e. the maximum temperature at the canister/buffer 
interface increased from 66 °C to about 73 °C). 

Reducing the canister spacing from 6.2 to 3 m, i.e. to the considered 
minimum canister spacing in the base case, increased the maximum tempe­
rature at the canister/buffer interface with about 18 °C. Thus resulting 
in a temperature maximum at the canister/buffer interface of about 94 °C 
(corresponding to a temperature rise of about 82 °C). 

The considered 100 °C upper tolerance limit of the temperature maximum 
at the canister/buffer interface was reached for a configuration with a 
canister spacing of about 3.8 m and a tunnel spacing of 20 m. 

A comparative calculation using the "PLAN 87 Canister" thermal proper­
ties of the canister region indicates that calculations with the 
SKB 91 (homogenized "equivalent" copper) Canister lead to about 10 per 
cent lower temperature maximum at the canister surface than that of the 
conservative calculations with the "PLAN 87 Canister" thermal proper­
ties, as used in the previous investigations. 

It should be mentioned that the thermal properties assigned to the 
canister region has very little influence on the temperature distribu­
tion in the "far field" region. In fact the temperature maxima become 
about the same already at the buffer/rock interface. 
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APPENDIX I Graphical display of the results 
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Figure la. Results from the base case (CBTlaHil). Time d~pendent tempera­
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the canister perpendicular to the tunnels. The distance between 
tunnels - 30 m and the distance between the canisters - 6.2 m. 
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APPENDIX II Short description of the heat flow model 

used in the calculations 



SHORT DESCRIPTION OF THE FLOW MODEL 

Introduction 

The finite element method was adopted for solving a set of transient 

heat flow equations in two or three dimensions for a Cartesian coordi­

nate system or alternatively in two dimensions for an axisymmetric coor­

dinate system. 

The flow domain may be discretized into quadrilateral 8- or 9-node ele­

ments in two dimensions, or 8-27 node hexahedral elements in three di­

mensions. The 8-node hexahedron applies to linear interpolation, while 

the 27-node hexahedron applies to quadratic interpolation over the flow 

domain. 

The thermal properties such as the specific heat and the thermal conduc­

tivity may be constant in space (over elements) and time, or varying in 

time or temperature dependent. In the present calculations all physical 

properties have been assumed to be constant over each element. 

Two types of boundary conditions are considered: (i) Prescribed fixed or 

time dependent temperature values along a boundary or (ii) Prescribed 

heat flux across a boundary. The time integration is according to back­

ward Euler, which is an implicit method. The time step scheme is usually 

pre-specified by the user but an automatic time step selection routine 

has been implemented. In the latter case the local truncation errors are 

checked and used for selecting the time steps. 

The model program is written in Fortran 77 and implemented on a 386-PC. 

A graphical interface for the display of the various types of results 

was written in Microsoft C. 
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Model equations 

Heat conduction is governed by the following equations: 

The heat flux equation (Fourier's law) 

q_ = - >. T . (1) 
1 , 1 

where q_ is the thermal flux in the i direction, >. denotes the thermal 
1 

conductivity, and T is temperature. 

The therma.l energy conservation equation 

(p C T) + q_ . + Q = 0 
, t l., 1 

(2) 

Substitution of (1) into (2) yields 

(p C T) - (>. T .) . + Q (t) = 0 
, t , 1 , 1 

(3) 

where p the density, C is the specific heat, T = T (x,y,z) is the tempe­

rature, >. is the thermal conductivity and Q (t) represents the time de­

pendent heat source. 

Boundary and initial conditions 

The boundary conditions are 

0 < X < 1 , 0 < y < 1 z = 0: T = T 
X y bottom 

0 < X < 1 0 < y < 1 z = 1 T = T 
X y z surf 

X 0 0 < y < 1 0 < z < 1 q,x = 0 
y z 

X 1 0 < y < 1 0 < z < 1 q,x = 0 (4) 
X y z 

y 0 0 < X < 1 0 < z < 1 q = 0 
X z ,Y 

y 1 0 < X < 1 0 < z < 1 q = 0 
y X z ,Y 

where 1, 1 and 1 are the dimensions of the domain in the x, y, and z 
X y Z 

directions, respectively, and T denotes the prescribed temperature 
surf 

on top of the rock surface and T denotes the prescribed tempera-
bottom 

ture on the bottom of the flow domain, respectively. 

The initial condition considered is a reference temperature assumed to 

follow the geothermal gradient. A distributed heat source (Q(t)) corre­

sponding to the variation in time of the thermal energy released from 

the radioactive waste is applied at the canister location. 
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The heat source 

The heat source is applied at 

0 < X < 1 

0 < y < 1 
C 

C 

z <z<z +h 
canister canister 

Q = Q (t) 

where 1 
C 

, (r is the canister radius) is the side of the "equi­
c 

valent" cross-section square of the canister and his the height of the 

canister. The time dependent variation of the heat generation per canis­

ter is approximated by a function of the following type: 

Q(t)/Q = 
0 

-at 
2 

( a e 
1 

-at 
3 + (1-a ) e 

1 
) 

where Q denotes the heat effect at the time of the deposition and a, 
0 

1 

a and a are constant coefficients. These are determined by minimizing 
2 3 

a function for the sum of the squares of the differences between the 

heat function values and the observed values. 

In the numerical scheme the time average value of the heat source is 

used for each time step. Integrating the above function over a time 

interval ( t Cn) :S t :S t Cn) +t.t) and dividing by the time step, we obtain 

a 
(Q(t)/Q ) (n) = 1 e 

o a L:.t 
2 

t (n) 
-a 

2 (1 - e 
-a L:.t 1-a 

2 ) 1 
+ a t.t e 

3 

( n) 
-a t 

3 
(1 - e 

where t(nl is current time level and ~t is current time step. 
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Method of solution 

The equations were solved numerically using the Galerkin finite element 

method. First, the following trial functions are introduced 

(5) 

where w3= w3 (x ) represents the basis functions chosen to satisfy the 
i 

essential boundary conditions. 

The same basis functions are also used to express the variation in the 

material properties over the elements, e.g., 

p 
(6) 

Making use of the orthogonality conditions, according to Galerkin' s 

method, we obtain 

< p C T > - < (). T . ) . , WI > + < q *, WI > = 0 (7) 
,i ,l. 

Applying Green's theorem to the second order terms in (7), we obtain 

< p C T 
I ,w > + < >. T 

t 

Substitution of (5) into (8) yields 

p C T 3 I w1w3 dR + T 3 I A w1 w3 dR 

- Jr en w1 dri + q~I w1wKdR = O 

This equation may be expressed in a matrix form as follows 

[A}{T } + [B}{T} +{CJ= 0 
't 

(8) 

(9) 

(10) 

and using a finite difference approximation for the time derivative, we 

obtain 

0 (11) 

or 
(12) 

where the superscript n denotes the time level. 

The algebraic matrix problem (12) is solved using the frontal method. 
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List of symbols 

1 
C 

C 
n 

e 

h 

1 
X 

1 
y 

1 
z 

q 

Q 

Q 
0 

r 
C 

t 

flt 

T 

X 

y 

z 

t 

Greek 

p 

w 

equivalent canister side ( 1 
C 

heat capacity 

fo = - r ) 
2 

normal component of the heat flux at the boundary 

height of canister 

the length of the investigated domain in the x-direction 

( = tunnel spacing/2 ) 

the length of the investigated domain in the y-direction 

( canister spacing/2 ) 

the length of the investigated domain in the z-direction 

thermal flux 

source/sink in the energy conservation equation 

initial strength of the heat source function 

canister radius 

time 

time interval 

temperature 

Cartesian coordinate in the horizontal plane 

Cartesian coordinate in the horizontal plane 

Cartesian coordinate in the vertical direction 

time 

coefficients in the heat source function 

thermal conductivity 

density 

basis function 

Subscripts 

i, j indices for Cartesian tensor notation; repeated indices 

indicate summation over these indices (i,j = 1,2,3) 

,i spatial derivative (i = 1,2,3) 

,t partial time derivative 

Superscripts 

I, J, K - node indices, repeated indices indicate summation over 

these indices (r,J,K =1,2, ... N, where N is the number of 

nodal points 
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